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We describe a collection of structurally diverse inhibitors of protein-protein-interactions (PPIs). This
collection is compared against the FDA drug database and a subset of the ZINC database by machine learning
methods which rely on classical QSAR descriptors. We obtain a decision tree that contains three descriptors.
Of particular importance is a constitutional descriptor related to molecular shape and size. Validation of the
decision tree by various procedures indicates that it does not result from chance correlations and has predictive
value. We conclude that constitutional descriptors may be valuable tools in the preselection of potential PPI
inhibitors from compound databases.

Introduction
Protein-protein interactions (PPIa) are responsible for a

multitude of biological effects. It is plausible to assume that
the number of pharmacologically relevant protein-protein
interactions exceeds the number of classical target structures
for drug development such as active sites or ligand binding
pockets. Therefore, small molecules that specifically interfere
with protein-protein recognition processes may become in-
creasingly important in drug development in the future. The
challenge of PPIs as target structures is to find ligands that have
sufficient affinity toward shallow or superficial binding sites
that offer only limited chemical functionality. This stands in
marked contrast to active sites that have evolved to bind
substrates and transition states with high affinity and, conse-
quently, also have the potential to tightly bind substrate analogs
or other small molecules. General reviews on the topic are given
by Hamilton and Yin1 and Fry.2

The purpose of the work presented here was to determine if
general principles or rules can be defined to quickly determine
whether or not a compound is a potential inhibitor of PPIs. Using
medicinal-chemical common sense, one can expect that PPI
inhibitors are, on average, larger than enzyme inhibitors or
receptor ligands; only large molecules can derive sufficient free
energy of binding when interacting with shallow or superficial
binding sites. However, it is certainly desirable to have a set of
differentiating rules that are more specific than “size” (be it
molecular weight, volume, or any other bulk property). We,
therefore, set out to first compile a collection of known PPI
inhibitors and then search for qualitative or quantitative measures
that are able to differentiate those compounds from other drugs.

To our knowledge, this work represents the first attempt to
determine discrimination rules for PPI inhibitors. The results
may be useful for the assessment and prescreening of virtual
compound databases, but also for general PPI inhibitor design
considerations.

The overall strategy is to extract known PPI data from the
literature and calculate descriptors of various types. Machine
learning methods are then used to discriminate between PPI
inhibitors and non-PPI inhibitors. We decided to construct a
decision tree because this type of model yields clear statements
about the most relevant descriptors and is, therefore, more
transparent and more amenable to interpretation than other
techniques such as neural networks or support vector machines.
A well-known example of a decision tree are the Lipinski rules
for oral bioavailability:3 this is a collection of criteria such as
maximum number of H-bond donors and maximum molecular
weight. These criteria are usually not presented in a tree-like
format, but work in exactly the same way.

Results and Discussion

Data Collection.A total of 25 PPI inhibitors were identified
from the literature. A compilation of the structures is given in
the Supporting Information. Peptides and small proteins like
enfuvirtide4 were not included in this study. It may be
noteworthy that none of the PPI inhibitors has a molecular
weight below 400 g/mol (cf. Figure 2). A very important point
in the preparation of the PPI inhibitor database was to achieve
a high structural diversity of the compounds. Therefore, only
one representative member from each class of compounds was
included in this study. The Food and Drug Administration
(FDA) approved drug database was used as a source of reference
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Figure 1. Pruned decision tree of 25 PPI inhibitors (attribute T: true,
green) and 1137 non-PPI inhibitors (attribute F: false, red) from the
FDA approved drug database. See the text for an explanation of the
descriptors. The numbers (e.g., 0.278) are the decision criteria of the
corresponding descriptor: at the highest bifurcation of this tree, a large
number of non-PPI inhibitors are “successfully” removed from the
training set because the value of SHP2 is larger than 0.278
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compounds for model building.5 Here we considered 1137
compounds. There were 80 compounds from the FDA database
that were not considered because the structure files contained
more than one compound or it was not possible to calculate all
descriptors. The PPI inhibitors from the literature and the FDA
database were initially built or received in 2D format (*.sd file)
and were converted to 3D format using the Corina6 program.
The ZINC7 database subset described below was constructed
from the complete 3D database that is available from the
Shoichet group web site.

Descriptors. Descriptors were calculated by the program
DRAGON 5 by Todeschini et al.8 In summary, 1664 descriptors
were calculated from various types like constitutional, molecular
profile, functional group count or molecular property descriptors.
For a complete list of descriptors, see ref 8. Descriptors were
preselected by removing those descriptors from the set that are
intercorrelated with a correlation coefficient above 0.9 as well
as constant descriptors (descriptors with standard deviation lower
than 0.0001) and near-constant descriptors (descriptors with only
one value different from the remaining ones). In the end, we
obtained 637 descriptors.

Construction of Decision Trees.We employed the divide-
and-conquer algorithm C4.59,10 revision 8 (J48) implemented
in the software package WEKA 3.4.6 by Witten and Frank10 to
construct decision trees. Activity is expressed in a binary
manner: T (true) for PPI inhibitor and F (false) for non-PPI
inhibitor. We generated a tree using the default parameter
settings of the J48 method. The model was evaluated by 10-
fold stratified cross-validation. The most important details are
given in the Experimental Section.

We obtained a decision tree that employs eight descriptors
and has a very high true-positive rate, that is, the tree performs
a nearly perfect classification of the training set compounds (cf.
Table 1, “initial decision tree”). However, the true-positive rate
is much lower in the cross-validation runs, indicating that the
initial decision tree has been overfitted and does not have
sufficient predictive power. We therefore decided to limit the
size of the tree to the most relevant descriptors (pruning). When
only the three most relevant descriptors of the initial tree are

used in the model building, the resulting decision tree performs
somewhat worse in the classification of the training set, but
has a much higher predictive power, as indicated by the cross-
validation results.

The pruned decision tree is shown in Figure 1. SHP2, the
most relevant descriptor at the top of the decision tree, denotes
a molecular shape descriptor introduced by Randic´.11 The
descriptor SHP2 is an average of various lower-level descriptors
that are derived from the interatomic distances of the atoms at
the periphery of a molecule. Therefore, it is related to molecular
properties like shape, size, and extension. nRCOOR is a
functional group count descriptor: nRCOOR denotes the
number of ester functions in the molecule. The nRCOOR
descriptor branching point serves to exclude ester functions. The
ester functionality is usually not considered as drug-like and
is, therefore, not present in most of the more recently developed
PPI inhibitors. Mor11m is a 3D-MoRSE (“Molecule Represen-
tation of Structures based on Electron diffraction”) descriptor
developed by Gasteiger et al.12 Mor11m is a representation of
the three-dimensional structure of a molecule.

The molecular shape descriptor SHP2 rejects most of the non-
PPI inhibitors (1045 compounds). This represents a nearly 10-
fold enrichment from 2.15% positives in the original dataset to
19.3%. Only three PPI inhibitors were falsely eliminated by
applying the decision rule based on this molecular shape
descriptor. It is not surprising to observe the importance of
molecular shape in the context of protein-protein interactions,
but we did not expect to observe such a pronounced enrichment
by applying a single, simple filter rule. Additionally, 58 non-
PPI inhibitors were rejected by the nRCOOR descriptor. The
MoRSE descriptor eliminates 18 non-PPI inhibitors. In the last
branch of the decision tree, the enrichment of PPI inhibitors
has reached 57.9%.

The correlation of SHP2 with descriptors describing molecular
size like molecular weight, mean atomic van der Waals volume,
or number of carbon atoms is low to medium (Table 2). PPIs
often have comparably high molecular weights, on average

Figure 2. Distribution of molecular weights of the PPI database (upper
chart) and the subset of the ZINC database (lower chart). It is interesting
to note that none of the known PPI inhibitors has a molecular weight
below 400 g/mol.

Table 1. Confusion Matrices and True-Positive Rates of the Initial and
the Pruned Decision Trees

Table 2. Correlation between Descriptors Used for Discrimination of
PPI and Non-PPI Inhibitors and Average Molecular Weighta

SHP2 nRCOOR Mor11m MW

SHP2 1
nRCOOR -0.598 1
Mor11m 0.180 -0.229 1
MW -0.697 -0.613 -0.592 1

a All values are correlation coefficients,R; n ) 1137.
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ranging from 400 to 1000 g/mol. However, molecular weight
alone is not a useful descriptor for the discrimination of PPI
inhibitors and non-PPI inhibitors. We were unable to build
meaningful decision trees or other models based on molecular
weight or similar bulk descriptors.

The correlation between the descriptors forming the decision
tree is generally weak. Table 2 shows the correlation coefficients
R (n ) 1137) of descriptors used for discrimination of PPI and
non-PPI inhibitors and molecular weight.

Validation: Y-Scrambling. Because the validation of the
proposed model is of utmost importance, we applied another
independent validation strategy: The PPI classification values
(true, false) of the 25 PPI inhibitors (classification true) were
reordered in a random manner (y scrambling) over the data set.
Afterward, attempts were made to build decision trees with the

scrambled activity data. If the classification rules were based
on chance correlations, then the resulting random datasets should
yield models that are of similar significance as the one that is
based on the real data. A total of 50 randomization runs were
performed. Table 3 shows the results of the permutation test.
In all cases, the obtained models do not have any useful
predictive power. In particular, the models are unable to reliably
identify the true positives from the dataset, which would be the
prime interest in using a PPI prediction model.

ZINC Subset as Test Case.We next studied the performance
of the model against a “background” database that is more
typical of high-throughput screening compound collections than
the FDA approved drug database.

There were 1130 molecules that were extracted from the
ZINC7 release 2007 database to obtain a collection of com-
pounds with a molecular weight distribution similar to the 25
PPI inhibitors. Figure 2 shows the molecular weight distributions
of the PPI inhibitors and the ZINC subset. The application of
the model to the ZINC subset leads to the classification shown
in Figure 3. There are 185 compounds that are predicted to be
potential PPI inhibitors, a number that is considerably larger
than in the training dataset, where 38 compounds were predicted
to be active (16 false-positives and 22 true-positives). The high
number of “false-positive” substances (if one assumes that none
of these compounds is active) in this test case may indicate
structural differences between the ZINC database and the FDA-
approved drug database: the ZINC database contains more
compounds that, judged by their chemical properties and
molecular shape, resemble known PPI inhibitors.

When the ZINC subset is limited to compounds with
molecular weights from 400 to 600 g/mol, the number of “false-
positives” decreases to about 130 (data not shown). This could
indicate that the proposed model works somewhat better for
smaller compounds. In the context of lead discovery and
druglikeness, this feature may be of particular value when
compound collections are prescreened using the chemoinfor-
matical descriptors described here.

Conclusion

In our opinion, the significance of the results lies only partially
in the nature of the actual descriptors used. We do not intend
to propose the particular decision tree shown here as the “one
and only” method for identifying potential PPI inhibitors by
database screening. However, the fact that a 10-fold enrichment
can be achieved by a single descriptor clearly indicates that it
may be possible to perform an effective virtual screening or
pre-selection of compounds based on classical, low-dimensional
QSAR descriptors in the search for PPI inhibitors. Given the
results of the validation experiments, we do not believe that
the obtained decision tree is the result of chance correlations.

Quite obviously, there are certain steric properties that are
found more frequently in PPI inhibitors than in “traditional”
ligands or inhibitors, and these steric properties can be described

Table 3. Validation of the Proposed Model by Permutation Testinga

confusion matrix from
cross-validationb

true-positive
ratec

No.
No. of
leafs

main
descriptor TP FN FP TN F T

0 (initial tree) 9 SHP2 9 16 23 1114 0.997 0.360
0 (pruned tree) 4 SHP2 22 3 16 1121 0.986 0.880
1 1 0 25 3 1134 0.997 0.000
2 1 0 25 0 1137 1.000 0.000
3 1 0 25 3 1134 0.997 0.000
4 1 0 25 0 1137 1.000 0.000
5 1 0 25 3 1134 0.997 0.000
6 3 nRCO 0 25 1 1136 0.999 0.000
7 1 0 25 0 1137 1.000 0.000
8 1 0 25 2 1135 0.998 0.000
9 1 0 25 0 1137 1.000 0.000

10 1 0 25 0 1137 1.000 0.000
11 1 0 25 0 1137 1.000 0.000
12 1 0 25 0 1137 1.000 0.000
13 1 0 25 4 1133 0.996 0.000
14 1 0 25 1 1136 0.999 0.000
15 1 0 25 1 1136 0.999 0.000
16 1 0 25 0 1137 1.000 0.000
17 1 0 25 0 1137 1.000 0.000
18 5 X1A 0 25 2 1135 0.998 0.000
19 1 0 25 0 1137 1.000 0.000
20 12 Mor03m 0 25 8 1129 0.993 0.000
21 1 0 25 0 1137 1.000 0.000
22 1 0 25 0 1137 1.000 0.000
23 1 0 25 0 1137 1.000 0.000
24 1 0 25 0 1137 1.000 0.000
25 1 0 25 0 1137 1.000 0.000
26 4 nR09 0 25 3 1134 0.997 0.000
27 1 0 25 0 1137 1.000 0.000
28 1 0 25 2 1135 0.998 0.000
29 3 0 25 2 1135 0.998 0.000
30 1 0 25 1 1136 0.999 0.000
31 1 0 25 4 1133 0.996 0.000
32 1 0 25 1 1136 0.999 0.000
33 1 0 25 2 1135 0.998 0.000
34 1 0 25 1 1136 0.999 0.000
35 1 0 25 0 1137 1.000 0.000
36 1 0 25 0 1137 1.000 0.000
37 3 S107 0 25 7 1130 0.994 0.000
38 1 0 25 3 1134 0.997 0.000
39 1 0 25 0 1137 1.000 0.000
40 1 0 25 1 1136 0.999 0.000
41 1 0 25 0 1137 1.000 0.000
42 1 0 25 3 1134 0.997 0.000
43 1 0 25 1 1136 0.999 0.000
44 3 GGI1 0 25 0 1137 1.000 0.000
45 1 0 25 0 1137 1.000 0.000
46 1 0 25 1 1136 0.999 0.000
47 1 0 25 0 1137 1.000 0.000
48 1 0 25 0 1137 1.000 0.000
49 1 0 25 0 1137 1.000 0.000
50 1 0 25 1 1136 0.999 0.000

a For an explanation of descriptors other than SHP2, see ref 8.b TP, true-
positives; FN, false-negatives; FP, false-positives; TN, true-negatives.c See
Experimental Section.

Figure 3. Application of the model to the ZINC subset. A total of
185 compounds from the ZINC subset are predicted to be PPI inhibitors.
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using abstract descriptors of molecular shape such as SHP2. In
contrast to other more detailed and less abstract ways of
searching large databases (e.g., docking or calculation of
receptor-independent 3D pharmacophoric models), the use of
low-dimensional QSAR descriptors has the great advantage of
being fast and very robust. It may be used for the effective
generation of subsets that may be further pruned by more
“sophisticated” modeling techniques. In the future, especially
when more and more PPI inhibitors are described, widening
the statistical basis for model development, it may be possible
to develop rules for the identification of PPI inhibitors that
resemble the Lipinski criteria3 for bioavailability. Given the
results described here, we are optimistic that it will be possible
to define such rules, and low-dimensional QSAR descriptors
will probably by useful in the process.

Experimental Section

Decision Trees.Decision trees were generated by the data mining
software package WEKA by Witten and Frank using the C4.5
algorithm J48 implemented in WEKA.10 The most important
parameters are confidenceFactor, minNumObj, numFolds, and the
pruning methodology. ConfidenceFactor is a parameter used for
pruning the decision tree. Smaller values lead to more pruning.
We used the default value of 0.25. MinNumObj is the minimum
number of instances per leaf. It is set to two. NumFolds determines
the amount of data used for pruning. One fold is used for pruning
and the rest is used for growing the tree. In our study, we used
numFolds) 3. WEKA allows that use of two pruning methodolo-
gies, the reduced-error pruning and the C4.5 pruning. The latter
method was used in this study.

There is no different cost associated with the different types of
misclassifications. This means that we assigned the same cost to
each type of error. The a priori probability for the two classes is
2.15% for class T and 97.85% for class F.

True-Positive Rate. The accuracy of the derived model is
calculated by true-positive rates of the different classes. The true-
positive rate tp of the T and F classes is calculated by

where TP denotes the true-positives, FN denotes the false-negatives,
and TN denotes the true-negatives classification.

Cross-Validation. Cross-validation procedures eliminate one or
several data sets (instances) from the training set, derive a
quantitative model from the remaining instances, and predict the
PPI classes for one or several instances that were not included in
the derivation of the model. All decision trees were computed from
scratch in the cross-validation. This means that the whole tree is

built from all the available data, and no incremental decision tree
induction is used. A 10-fold stratified crossvalidation was per-
formed. Random seeds were set arbitrarily.

Overfitting can be prevented by pruning the tree. Therefore, the
concept space is examined starting from the easiest complex
description toward more complex concept descriptions (simplest-
first ordering). The simplest-first search and breakup at a sufficient
complex concept description is a reliable way to avoid overfitting.9

The C4.5 algorithm J48 implemented in WEKA is robust concern-
ing overfitting.10
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